Abstract

Prompted by the relevant problem of temperature inversion (i.e. gradient of density anti-correlated to the gradient of temperature) in astrophysics, we introduce a novel method to model a gravitationally confined multi-component collisionless plasma in contact with a fluctuating thermal boundary. We focus on systems with anti-correlated (inverted) density and temperature profiles, with applications to solar physics. The dynamics of the plasma is analytically described via the coupling of an appropriated coarse-grained distribution function and a temporally coarse-grained Vlasov dynamics. We derive a stationary solution of the system and predict the inverted density and temperature profiles of the two species for scenarios relevant for the corona. We validate our method by comparing the analytical results with kinetic numerical simulations of the plasma dynamics in the context of the two-species Hamiltonian mean-field model. Finally, we apply our theoretical framework to the problem of the temperature inversion in the solar corona, obtaining density and temperature profiles in remarkably good agreement with the observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.