Abstract

We have studied electron scattering by out-of-plane (flexural) phonons in doped suspended bilayer graphene. We have found the bilayer membrane to follow the qualitative behavior of the monolayer cousin. In the bilayer, different electronic structure combine with different electron-phonon coupling to give the same parametric dependence in resistivity, and in particular the same temperature $T$ behavior. In parallel with the single layer, flexural phonons dominate the phonon contribution to resistivity in the absence of strain, where a density independent mobility is obtained. This contribution is strongly suppressed by tension, and in-plane phonons become the dominant contribution in strained samples. Among the quantitative differences an important one has been identified: room $T$ mobility in bilayer graphene is substantially higher than in monolayer. The origin of quantitative differences has been unveiled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.