Abstract

We studied the temperature dependent transport properties and memory behaviour of ultrathin black phosphorus field-effect transistors. The devices show electrical conductance and field-effect mobility that decreases with the rising temperature. The field effect mobility, which depends also on the gate voltage sweep range, is 283 cm2V−1s−1 at 150 K and reduces to 33 cm2V−1s−1 at 340 K, when the voltage gate sweep range is 50 V. The transfer characteristics show a hysteresis width that increases with the temperature and is exploited to enable non-volatile memories with a wider programming window at higher temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.