Abstract
We studied the vertical and lateral charge transport characteristics of a diketopyrrolopyrrole polymer donor (D)–PC61BM acceptor (A) system by measuring the space charge limited current (SCLC) mobility and field-effect mobility respectively. It was found that with an increase in annealing temperature, the SCLC hole mobility decreased for the pure polymer (PDBFBT) but increased for the PDBFBT:PC61BM blends, which could be explained by changes in the crystallinity and crystal orientation (edge-on versus face-on). The pure PDBFBT and most blend films showed the maximum field-effect hole mobility (µh) when annealed at 100°C, which then declined as the annealing temperature was further increased. Surprisingly, the D/A = 1/1 blend films annealed at high temperatures exhibited an abrupt increase in the field-effect µh. This unusual phenomenon was interpreted by the antiplasticization effect of PC61BM, which promoted the molecular organization of the polymer. The effect of annealing on the carrier mobility was further correlated with the performance of inverted organic solar cell devices with the PDBFBT:PC61BM blend (D/A = 1/3). Thermal annealing at high temperatures (>100°C) was found to obstruct electron transport and cause the device performance to significantly deteriorate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.