Abstract

Photo-induced Inverse Spin Hall Effect (ISHE) measurements on Au/InP hybrid structures are performed over a temperature range of 45 to 300 K. Dependence of the spin current density on the degree of circular polarization and also on the angle of incidence of laser beam confirms the ISHE origin of measured signal. The magnitude of ISHE increases with sample cooling. A numerical model based on the spin relaxation of non-equilibrium spin-polarized electrons is proposed for predicting the temperature dependence of ISHE. Our results indicate that the proposed device can be used as a spin photodetector over a wide temperature range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.