Abstract

The material of methylammonium lead iodide, CH3NH3PbI3 (MAPbI3), has shown significant promise in solar cell applications. A way to infer the microscopic scattering mechanism(s) in MAPbI3 is through the measured temperature dependence of carrier mobility. To this end, how does the carrier effective mass depend on temperature, m* = m*(T), is a useful information since the mobility is a function of m*. By atomistic first principles, we report the calculated m*(T) due to the thermal expansion of MAPbI3 materials, in the experimentally relevant range of 130 K to room temperature. The calculated results suggest m* = m*(T) to be linear in T. The increase of m* versus temperature is predominantly due to the expansion of the longitudinal atomic spacing that weakens the s/p hybridization between the I/Pb atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call