Abstract

Abstract The lithium barium orthophosphate LiBaPO 4 compound has been synthesized by the classic ceramic method and characterized by X-ray diffraction (XRD) technique. The electrical conductivity and modulus characteristics of the system have been investigated in the temperature and the frequency range 681–872 K and 200 Hz–1 MHz respectively by means of impedance spectroscopy. The activation energy value of LiBaPO 4 sample is bigger than of the LiMPO 4 (M = Mn, Co, Ni, Fe) compounds. The frequency dependent conductivity of the present system shows the power law feature. Dielectric data were analyzed using complex electrical modulus M* at various temperatures. The peak positions ω m of the above spectra shift towards higher frequencies with increase in temperature. The above spectra have been characterized in terms of Kohlrausch–Williams–Watts (KWW) relaxation function to understand relaxation behavior. The activation energy responsible for relaxation calculated from the modulus spectra is found to be almost the same as the value obtained from temperature variation of dc conductivity. The electrical modulus and its scaling behavior are also investigated and the relationship between power-law exponent n and stretched exponential exponent β is found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call