Abstract

Abstract The High-k/Metal-Gate Stack (HKMG) technology represents a seminal advancement in semiconductor fabrication, predicated upon the substitution of SiO2 with high-k dielectric materials, coupled with the integration of metal gate materials. This technological paradigm shift has emerged as a transformative response to the intricate challenges encountered within the semiconductor industry, a sector perpetually engaged in the relentless pursuit of diminishing the critical dimensions of semiconductor devices. Issues such as increased power leakage, enhanced parasitic capacitance, and the escalating complexity of gate insulators have impeded the sustainable downscaling of traditional silicon dioxide-based devices. These challenges have necessitated a comprehensive re-evaluation of the materials and processes involved in semiconductor manufacturing, leading to the conception and evolution of the HKMG technology. This article’s analysis of the developmental trajectory of HKMG technology reveals a progression marked by the systematic exploration of alternative high-k dielectric materials, rigorous compatibility assessments with metal gate materials, and the concurrent refinement of manufacturing processes to ensure seamless integration. After that, elucidating the impediments encountered during its evolution and expounding upon the corresponding ameliorative measures instituted. Looking ahead, ongoing research focusing on the synthesis of advanced high-k dielectric materials, and the development of novel metal gate materials with superior compatibility to further enhance device performance and functionality makes HKMG technology a huge prospect. Such advancements are paving the way for the realization of more powerful, energy-efficient, and compact electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.