Abstract
This paper presents and discusses the recent developments on the Fast-Response Aerodynamic Pressure Probe (FRAPP) technology at the Laboratorio di Fluidodinamica delle Macchine (LFM) of the Politecnico di Milano. First, the different geometries developed and tested at LFM are presented and critically discussed: the paper refers to single-sensor or two-sensor probes applied as virtual 2D or 3D probes for phase-resolved measurements. The static calibration of the sensors inserted inside the head of the probes is discussed, also taking into account for the temperature field of application: in this context, a novel calibration procedure is discussed and the new manufacturing process is presented. The dynamic calibration is reconsidered in view of the 15-years’ experience, including the extension to probes operating at different temperature and pressure levels with respect to calibration. As for the probe aerodynamics, the calibration coefficients are discussed and the most reliable set here is evidenced. A novel procedure for the quantification of the measurement uncertainty, recently developed and based on the Montecarlo methodology, is introduced and discussed in the paper.
Highlights
Measuring the unsteady flow downstream of turbomachinery rotors evolved from being a ‘niche’research activity in the nineties to becoming a common practice the scientific studies of present-day turbomachinery [1,2,3,4,5], with relevant examples of industrial applications [6,7,8]
A key contribution to this development came from one specific measurement technology, i.e., the Fast Response Aerodynamic Pressure Probe (FRAPP), which has undoubted advantages with respect to other intrusive or non-intrusive techniques in terms of rigidity, reliability, promptness
This paper presented the most relevant developments in FRAPP technology at Politecnico di Milano in the last decade
Summary
Measuring the unsteady flow downstream of turbomachinery rotors evolved from being a ‘niche’. Research activity in the nineties to becoming a common practice the scientific studies of present-day turbomachinery [1,2,3,4,5], with relevant examples of industrial applications [6,7,8] Such evolution was supported by the technical development of instrumentation technology, of novel data-reduction methods, and by the practical experience of the experimentalists. This paper proposes a review of the most relevant advances in FRAPP technology conceived and applied at Politecnico di Milano in the last decade, in terms of high-temperature applications, dynamic identification and uncertainty quantification, analyzing systematically probes for two-dimensional and three-dimensional measurements
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Turbomachinery, Propulsion and Power
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.