Abstract

This paper analyzes the propagation of the aerodynamic deterministic stresses through a two-spool counter-rotating transonic turbine at Graz University of Technology. The test setup consists of a high-pressure stage, a diffusing midturbine frame with turning struts and a counter-rotating low-pressure rotor. The discussion of the data is carried out in this second part paper on the basis of spectral analysis. The theoretical framework for a double Fourier decomposition, in time and space, is introduced and discussed. The aim of the paper is the identification of the sources of deterministic stresses that propagate through the turbine. A fast-response aerodynamic pressure probe has been employed to provide time-resolved data downstream of the high-pressure rotor and of the turning strut. The fast-response aerodynamic pressure probe measurements were acquired together with a reference signal (a laser vibrometer) downstream of the high-pressure rotor to identify different sources of deterministic fluctuations. The discussion is completed by fast-response pressure measurements on the strut surface and computational fluid dynamics computation to detail which deterministic stress related to the high-pressure stage propagates through the duct. The double Fourier decomposition shows that structures at the periodicity of the rotor blade number decay, whereas the unsteadiness at the outlet of the duct is the result of vane–rotor–vane interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.