Abstract
The 4m Advance Technology Solar Telescope (ATST) will be the most powerful solar telescope in the world, providing a unique scientific tool to study the Sun and possibly other astronomical objects, such as solar system planets. We briefly summarize the science drivers and observational requirements of ATST. The main focus of this paper is on the many technical challenges involved in designing a large aperture solar telescope. The ATST project has entered the design and development phase. Development of a 4-m solar telescope presents many technical challenges. Most existing high-resolution solar telescopes are designed as vacuum telescopes to avoid internal seeing caused by the solar heat load. The large aperture drives the ATST to an open-air design, similar to night-time telescope designs, and makes thermal control of optics and telescope structure a paramount consideration. A heat stop must reject most of the energy (13 kW) at prime focus without introducing internal seeing. To achieve diffraction-limited observations at visible and infrared wavelengths, ATST will have a high order (order 1000 DoF) adaptive optics system using solar granulation as the wavefront sensing target. Coronal observations require occulting in prime focus, a Lyot stop and contamination control of the primary. An initial set of instruments will be designed as integral part of the telescope. First telescope design and instrument concepts will be presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.