Abstract

Construction of the Daniel K. Inouye Solar Telescope (DKIST) is well underway on the Haleakalā summit on the Hawaiian island of Maui. Featuring a 4-m aperture and an off-axis Gregorian configuration, the DKIST will be the world’s largest solar telescope. It is designed to make high-precision measurements of fundamental astrophysical processes and produce large amounts of spectropolarimetric and imaging data. These data will support research on solar magnetism and its influence on solar wind, flares, coronal mass ejections, and solar irradiance variability. Because of its large aperture, the DKIST will be able to sense the corona’s magnetic field—a goal that has previously eluded scientists—enabling observations that will provide answers about the heating of stellar coronae and the origins of space weather and exo-weather. The telescope will cover a broad wavelength range (0.35 to 28 microns) and operate as a coronagraph at infrared (IR) wavelengths. Achieving the diffraction limit of the 4-m aperture, even at visible wavelengths, is paramount to these science goals. The DKIST’s state-of-the-art adaptive optics systems will provide diffraction-limited imaging, resolving features that are approximately 20 km in size on the Sun. At the start of operations, five instruments will be deployed: a visible broadband imager (VTF), a visible spectropolarimeter (ViSP), a visible tunable filter (VTF), a diffraction-limited near-IR spectropolarimeter (DLNIRSP), and a cryogenic near-IR spectropolarimeter (cryo-NIRSP). At the end of 2017, the project finished its fifth year of construction and eighth year overall. Major milestones included delivery of the commissioning blank, the completed primary mirror (M1), and its cell. Commissioning and testing of the coude rotator is complete and the installation of the coude cleanroom is underway; likewise, commissioning of the telescope mount assembly (TMA) has also begun. Various other systems and equipment are also being installed and tested. Finally, the observatory integration, testing, and commissioning (IT&C) activities have begun, including the first coating of the M1 commissioning blank and its integration within its cell assembly. Science mirror coating and initial on-sky activities are both anticipated in 2018.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call