Abstract

TDDFT has been used to confirm the cysteine-sensing mechanism of a reported fluorescent probe (Talanta, 2020, 220, 12136). Frontier molecular orbital analysis showed that the probe underwent a PET process from quinazolinone to acryloyl, which made the fluorescence quenched together with nonplanar structure. Cysteine removed the acryloyl moiety and inhibited the PET process. The planar geometry of the probe-cysteine product enlarged the conjugated system and enhanced the green fluorescence of the fluorophore. Moreover, the charge redistribution also led to the excited-state proton transfer process, ultimately enhanced the fluorescence intensity and a notable Stocks shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.