Abstract
The different excited-state behaviors involved in excited-state proton transfer (ESPT) process of a series of 2-(2-hydroxyphenyl)benzoxazole (HBO) derivatives have been theoretically investigated. The primary bond lengths and bond angles were analyzed. Coupling with the infrared (IR) vibrational spectra, we confirmed that the intramolecular hydrogen bond O–H···N should be strengthened in the S1 state, which might provide the possibility for ESPT reaction, whereas introducing the fused rings may weaken the hydrogen bond in excited state. By investigating the vertical excitation process, the charge redistribution was explored. It is found that the electron-accepting –NO2 and –COOH would facilitate the ESPT reaction. With adding fused rings to HBO, less charge transfer exists in the transition process, which can reasonably explain the weakening hydrogen bond phenomenon in excited states. Via constructing the potential energy curves of both S0 and S1 states, we further confirm that electron-accepting substitutions could promote the ESPT process for HBO systems. And fused rings do inhibit ESPT reaction to a great extent. We believe this work not only elaborates the different excited-state proton transfer behaviors for a series of HBO derivatives but also presents a new harnessing ESPT process through substitutional effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.