Abstract

Speech signals play an essential role in communication and provide an efficient way to exchange information between humans and machines. Speech Emotion Recognition (SER) is one of the critical sources for human evaluation, which is applicable in many real-world applications such as healthcare, call centers, robotics, safety, and virtual reality. This work developed a novel TCN-based emotion recognition system using speech signals through a spatial-temporal convolution network to recognize the speaker’s emotional state. The authors designed a Temporal Convolutional Network (TCN) core block to recognize long-term dependencies in speech signals and then feed these temporal cues to a dense network to fuse the spatial features and recognize global information for final classification. The proposed network extracts valid sequential cues automatically from speech signals, which performed better than state-of-the-art (SOTA) and traditional machine learning algorithms. Results of the proposed method show a high recognition rate compared with SOTA methods. The final unweighted accuracy of 80.84%, and 92.31%, for interactive emotional dyadic motion captures (IEMOCAP) and berlin emotional dataset (EMO-DB), indicate the robustness and efficiency of the designed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.