Abstract

Emotion recognition in speech signals is currently a very active research topic and has attracted much attention within the engineering application area. This paper presents a new approach of robust emotion recognition in speech signals in noisy environment. By using a weighted sparse representation model based on the maximum likelihood estimation, an enhanced sparse representation classifier is proposed for robust emotion recognition in noisy speech. The effectiveness and robustness of the proposed method is investigated on clean and noisy emotional speech. The proposed method is compared with six typical classifiers, including linear discriminant classifier, K-nearest neighbor, C4.5 decision tree, radial basis function neural networks, support vector machines as well as sparse representation classifier. Experimental results on two publicly available emotional speech databases, that is, the Berlin database and the Polish database, demonstrate the promising performance of the proposed method on the task of robust emotion recognition in noisy speech, outperforming the other used methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.