Abstract

IntroductionExposure to rotenone could directly affects the function of mitochondrial which leads to neurodegeneration. This study evaluated the therapeutic potential of taxifolin (Huāqí sōng dài; 花旗松甙) to alleviate metabolic and neurochemical alterations in the hippocampal and cortical region of brain of rotenone-toxified rats. MethodsMale Wistar rats were subcutaneously administered 1.5 mg/kg rotenone for 10 days, followed by post-treatment with varying doses of taxifolin (0.25, 0.5 and 1.0 mg/kg) for 3 days through the same route. Activities of mitochondrial complex I, membrane ion pump and lactate dehydrogenase (LDH) were evaluated in the hippocampus and cortex of the brain of rotenone-toxified rats. Markers of neurotransmitter metabolism and oxidative stress were also biochemically estimated and molecular interaction between taxifolin and tyrosine hydroxylase, monoamine oxidase, glutamine synthetase and Na+/K+ATPase was determined by in silico simulation. ResultsTaxifolin attenuated dysfunction of mitochondrial, Na+/K+ATPase, LDH and modulate neurotransmitter metabolism. Also, the elicited oxidative stress was mitigated by taxifolin in the hippocampus and cortex of the brain of rotenone-toxified rats. Furthermore, taxifolin showed excellent interactions with targeted enzymes in silico. The highest binding affinity was recorded in taxifolin-tyrosine hydroxylase complex. Hydrogen bond and hydrophobic interactions were the two key molecular interaction between the taxifolin and targeted enzymes. DiscussionTaxifolin alleviates metabolic and neurochemical aberrations in rotenone-induced neurotoxicity model in rats in vivo and exhibits promising interactions with specific target enzymes that are key to neurotransmission in silico.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call