Abstract

Plants are subjected to a variety of abiotic stresses during their lifetime, and drought and salt stress are some of the main causes of reduced crop yields. Previous studies have shown that AREB/ABFs within bZIP transcription factors are involved in plant drought and salt stress responses in an ABA-dependent manner. However, the properties and functions of AREB/ABFs in Fagopyrum tataricum, a cereal with good resistance to abiotic stresses, are poorly understood. In this study, a gene encoding an AREB/ABF, designated FtbZIP83, was first isolated from Tartary buckwheat. Expression analysis in Tartary buckwheat indicated that FtbZIP83 was significantly induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). The overexpression of FtbZIP83 in Arabidopsis resulted in increased drought/salt tolerance, which was attributed not only to higher proline (Pro) contents and antioxidant enzyme activity in transgenic lines compared with controls but also to the lower reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. In addition, we found that FtbZIP83 was able to respond to drought and salt stress by upregulating the transcript abundance of downstream ABA-inducible gene. Furthermore, promoter sequence analysis showed that ABREs were present, and the activity of the FtbZIP83 promoter in transgenic Arabidopsis after drought stress was significantly higher than that under normal conditions. Based on the potential signalling pathways involved in AREB/ABFs, we also screened for the interaction protein FtSnRK2.6/2.3, which may phosphorylate FtbZIP83. Collectively, these results provide evidence that FtbZIP83, as a positive regulator, responds to drought/salt stress via an ABA-dependent signalling pathway composed of SnRK2-AREB/ABF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.