Abstract

Tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.] is a pseudocereal with strongly abiotic resistance. NACs, one of the largest plant-specific transcription factors (TFs), are involved in various stress responses. However, the characteristics and regulatory mechanisms of NAC TFs remain unclarified clearly in Tartary buckwheat (TB). In this study, it validated that salt, drought, and abscisic acid (ABA) stress significantly up-regulated the expression of NAC TF gene FtNAC31. Its coding protein has a C-terminal transactivated domain and localized in the nucleus, suggesting that FtNAC31 might play a transcriptional activation role in TB. Notably, overexpression of FtNAC31 lowered the seed germination rate upon ABA treatment and enhanced the tolerance to salt and drought stress in transgenetic Arabidopsis. Furthermore, under various stresses, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in FtNAC31 overexpressed lines exhibited a sharp increase trend. Meanwhile, the expression levels of several stress-associated genes including RD29A, RD29B, RD22, DREB2B, NCED3, and POD1, were dramatically upregulated in lines overexpressing FtNAC31. Altogether, overproduction of FtNAC31 could enhance the resistance to salt and drought stresses in transgenic Arabidopsis, which most likely functioned in an ABA-dependent way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call