Abstract

MYB transcription factors play important roles in plant responses to biotic and abiotic stress. In this study, TaODORANT1, a R2R3-MYB gene, was cloned from wheat (Triticum aestivum L.). TaODORANT1 was localized in the nucleus and functioned as a transcriptional activator. TaODORANT1 was up-regulated in wheat under PEG6000, NaCl, ABA, and H2O2 treatments. TaODORANT1-overexpressing transgenic tobacco plants exhibited higher relative water content and lower water loss rate under drought stress, as well as lower Na+ accumulation in leaves under salt stress. The transgenic plants showed higher CAT activity but lower ion leakage, H2O2 and malondialdehyde contents under drought and salt stresses. Besides, the transgenic plants also exhibited higher SOD activity under drought stress. Our results also revealed that TaODORANT1 overexpression up-regulated the expression of several ROS- and stress-related genes in response to both drought and salt stresses, thus enhancing transgenic tobacco plants tolerance. Our studies demonstrate that TaODORANT1 positively regulates plant tolerance to drought and salt stresses.

Highlights

  • Plants are very often subjected to unfavorable environmental conditions, such as high salinity, drought, and extreme temperatures, which adversely affect plant growth, development, and productivity

  • Wheat MYB expressed sequence tags (ESTs) were obtained by searching the NCBI UniGene database8 with known Arabidopsis and rice MYB sequences listed in Supplementary Table S3

  • Many transcription factors (TFs) involved in plants abiotic stress have been identified and characterized, few MYB genes have so far been characterized in wheat

Read more

Summary

Introduction

Plants are very often subjected to unfavorable environmental conditions, such as high salinity, drought, and extreme temperatures, which adversely affect plant growth, development, and productivity. To adapt to such environmental conditions, complex response mechanisms have been evolved in plants, including transcriptional regulation networks for the transduction of stress signals. The implementation of these intricate networks depends on the participation of various transcription factors (TFs), such as MYB, NAC, AP2/ERF, bZIP, bHLH, and WRKY (Qin et al, 2011; Chen et al, 2012).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call