Abstract
Scale-free configuration models are intimately connected to power law Galton–Watson trees. It is known that contact process epidemics can propagate on these trees and therefore these networks with arbitrarily small infection rate, and this continues to be true after uniformly immunizing a small positive proportion of vertices. So, we instead immunize those with largest degree: above a threshold for the maximum permitted degree, we discover the epidemic with immunization has survival probability similar to without, by duality corresponding to comparable metastable density. With maximal degree below a threshold on the same order, this survival probability is severely reduced or zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.