Abstract

AbstractFor graphs of bounded maximum average degree, we consider the problem of 2‐distance coloring, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbor receive different colors. We prove that graphs with maximum average degree less than and maximum degree Δ at least 4 are 2‐distance ‐colorable, which is optimal and improves previous results from Dolama and Sopena, and from Borodin et al. We also prove that graphs with maximum average degree less than (resp. , ) and maximum degree Δ at least 5 (resp. 6, 8) are list 2‐distance ‐colorable, which improves previous results from Borodin et al., and from Ivanova. We prove that any graph with maximum average degree m less than and with large enough maximum degree Δ (depending only on m) can be list 2‐distance ‐colored. There exist graphs with arbitrarily large maximum degree and maximum average degree less than 3 that cannot be 2‐distance ‐colored: the question of what happens between and 3 remains open. We prove also that any graph with maximum average degree can be list 2‐distance ‐colored (C depending only on m). It is optimal as there exist graphs with arbitrarily large maximum degree and maximum average degree less than 4 that cannot be 2‐distance colored with less than colors. Most of the above results can be transposed to injective list coloring with one color less.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.