Abstract
It is widely known that stochastic differential equations with Markovian switching, involving terms without Lipschitz continuity like |u|1/2+α for α∈[0,1/2), are of great practical value in many fields such as finance and biology. In this paper, we develop the tamed Euler-Maruyama schemes for switching diffusion systems modulated by a Markov chain, under the circumstances that drift coefficient satisfies the locally Lipschitz condition and diffusion coefficient satisfies the locally Hölder continuous condition. Moreover, we obtain the rate of convergence of the numerical algorithm not only at time T but also over the time interval [0,T]. Finally we give the numerical experiments to illustrate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.