Abstract
In this paper, we are concerned with the stochastic differential delay equations with Markovian switching (SDDEwMSs). As stochastic differential equations with Markovian switching (SDEwMSs), most SDDEwMSs cannot be solved explicitly. Therefore, numerical solutions, such as EM method, stochastic Theta method, Split-Step Backward Euler method and Caratheodory’s approximations, have become an important issue in the study of SDDEwMSs. The key contribution of this paper is to investigate the strong convergence between the true solutions and the numerical solutions to SDDEwMSs in the sense of the L p -norm when the drift and diffusion coefficients are Taylor approximations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.