Abstract

Fidelity susceptibility is a quantum information-based approach that has been an effective tool for detecting and characterizing quantum phase transitions in an equilibrium setting. Motivated by the usefulness of the static counterpart, we propose that it can serve as a versatile tool to identify dynamical quantum phase transitions. Further, we develop linear-scale simulation methods for dynamical fidelity susceptibility calculations, which are based on the Chebyshev polynomial-expansion approach. We study the Aubry–André model as a benchmark for the validation of the computational technique. Numerical simulations show nonanalytic behaviors of the fidelity susceptibility in the time domain, signaling the existence of dynamical quantum phase transitions triggered by the incommensurate potential modulation of quantum quench systems. In addition, we find an excellent scaling collapse of the data onto a single curve in the limiting quench processes, which leads to a single-parameter scaling in the fidelity susceptibility. The feasibility of experimental measurement of the fidelity susceptibility opens up a new avenue toward an understanding of the nonequilibrium transport of quantum systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.