Abstract

The goal of talking face generation is to synthesize a sequence of face images of the specified identity, ensuring the mouth movements are synchronized with the given audio. Recently, image-based talking face generation has emerged as a popular approach. It could generate talking face images synchronized with the audio merely depending on a facial image of arbitrary identity and an audio clip. Despite the accessible input, it forgoes the exploitation of the audio emotion, inducing the generated faces to suffer from emotion unsynchronization, mouth inaccuracy, and image quality deficiency. In this article, we build a bistage audio emotion-aware talking face generation (AMIGO) framework, to generate high-quality talking face videos with cross-modally synced emotion. Specifically, we propose a sequence-to-sequence (seq2seq) cross-modal emotional landmark generation network to generate vivid landmarks, whose lip and emotion are both synchronized with input audio. Meantime, we utilize a coordinated visual emotion representation to improve the extraction of the audio one. In stage two, a feature-adaptive visual translation network is designed to translate the synthesized landmarks into facial images. Concretely, we proposed a feature-adaptive transformation module to fuse the high-level representations of landmarks and images, resulting in significant improvement in image quality. We perform extensive experiments on the multi-view emotional audio-visual dataset (MEAD) and crowd-sourced emotional multimodal actors dataset (CREMA-D) benchmark datasets, demonstrating that our model outperforms state-of-the-art benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.