Abstract
Generating a talking face video from a given audio clip and an arbitrary face image has many applications in areas such as special visual effects and human–computer interactions. This is a challenging task, as it requires disentangling semantic information from both input audio clips and face image, then synthesizing novel animated facial image sequences from the combined semantic features. The desired output video should maintain both video realism and audio–lip motion consistency. To achieve these two objectives, we propose a coarse-to-fine tree-like architecture for synthesizing realistic talking face frames directly from audio clips. This is followed by a video-to-word regeneration module to translate the synthesized talking videos back to the words space, which is enforced to align with the input audios. With multi-level facial landmark attentions, the proposed audio-to-video-to-words framework can generate fine-grained talking face videos that are not only synchronous with the input audios but also maintain visual details from the input face images. Multi-purpose discriminators are also adopted for adversarial learning to further improve both image fidelity and semantic consistency. Extensive experiments on GRID and LRW datasets demonstrate the advantages of our framework over previous methods in terms of video quality and audio–video synchronization.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have