Abstract
Reliable electric insulation is the premise for the application of high-voltage technologies, such as power transmission, emergent electrified transportations, and advanced propulsion systems. With the current insulation strategy, the credibility of insulation system depends on the sufficient insulation materials usage, suffering from bulky structure, expensive production costs and environmental pollution. Here, we propose a strategy that applies a lightweight multiple-barrier skeleton in gas insulation to tailor electron free path and restrain electron avalanche, thus realizing a high insulation strength with less material usage. This strategy is verified by the composite insulation of porous polyimide aerogel and various types of insulating gases. It achieves a comparable insulation strength to conventional polymers by less than 10% materials usage. With above insulation strategy, a 152.5% improvement in power density and a 54.6% weight reduction are acquired in the cable system for more or all electric aircraft. This strategy inspires the design of efficient insulation solution with both high breakdown strength and lightweight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.