Abstract

Polymer-based nanoparticles (NPs) have been extensively developed for delivering anti-cancer drugs, based on their physical properties, including high biocompatibility and easy fabricability. Despite their widespread use, their further application is limited by complicated in vivo environment owing to presence of high levels of proteins and immune cells that promote NP clearance. Recently, cell membrane coating technology has emerged, which allows NPs to be camouflaged to avoid immune clearance and the utilization of natural membrane-bound proteins for other applications. Here, we reveal that T-cell membrane coating onto the widely used poly(lactic-co-glycolic acid) nanoparticles (T-PLGA NPs) significantly reduces macrophage-mediated cellular uptake of NPs. Furthermore, T-PLGA effectively induced cancer cell death, both in vitro and in vivo. T-cell membranes inherit the functional proteins of T cells to PLGA, which is critical for evading clearance and cytotoxicity against cancers. Overall, the T-cell membrane coating approach offers great potential to overcome the current drawbacks of polymer-based NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.