Abstract
ObjectGlioma is a common malignant tumours in the central nervous system (CNS), that exhibits high morbidity, a low cure rate, and a high recurrence rate. Currently, immune cells are increasingly known to play roles in the suppression of tumourigenesis, progression and tumour growth in many tumours. Therefore, given this increasing evidence, we explored the levels of some immune cell genes for predicting the prognosis of patients with glioma.MethodsWe extracted glioma data from The Cancer Genome Atlas (TCGA). Using the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm, the relative proportions of 22 types of infiltrating immune cells were determined. In addition, the relationships between the scales of some immune cells and sex/age were also calculated by a series of analyses. A P-value was derived for the deconvolution of each sample, providing credibility for the data analysis (P < 0.05). All analyses were conducted using R version 3.5.2. Five-year overall survival (OS) also showed the effectiveness and prognostic value of each proportion of immune cells in glioma; a bar plot, correlation-based heatmap (corheatmap), and heatmap were used to represent the proportions of immune cells in each glioma sample.ResultsIn total, 703 transcriptomes from a clinical dataset of glioma patients were drawn from the TCGA database. The relative proportions of 22 types of infiltrating immune cells are presented in a bar plot and heatmap. In addition, we identified the levels of immune cells related to prognosis in patients with glioma. Activated dendritic cells (DCs), eosinophils, activated mast cells, monocytes and activated natural killer (NK) cells were positively related to prognosis in the patients with glioma; however, resting NK cells, CD8+ T cells, T follicular helper cells, gamma delta T cells and M0 macrophages were negatively related to prognosis in the patients with glioma. Specifically, the proportions of several immune cells were significantly related to patient age and sex. Furthermore, the level of M0 macrophages was significant in regard to interactions with other immune cells, including monocytes and gamma delta T cells, in glioma tissues through sample data analysis.ConclusionWe performed a novel gene expression-based study of the levels of immune cell subtypes and prognosis in glioma, which has potential clinical prognostic value for patients with glioma.
Highlights
Accumulating studies have revealed that glioma is associated with high mortality, a high recurrence rate and a poor prognosis [1]
We summarized current information about 22 kinds of Tumor-infiltrating immune cells (TIIC) generally recognized in the field that may prevent and/or boost the progression of glioma, as well as their proportions related to prognosis in glioma patients
We inferred that divergence in TIIC proportions might serve as an essential characteristic of individual differences and have prognostic value
Summary
Accumulating studies have revealed that glioma is associated with high mortality, a high recurrence rate and a poor prognosis [1]. Tumour-infiltrating immune cells (TIICs) include immune cells that migrate from the periphery to tumour tissues and exert a positive or negative effect; these cells have vital functional roles in promoting and/or regulating tumour progression and growth [4]. Wu et al recognized a significant difference between nontumour and GBM samples in several immune checkpoint modulators based on the expression levels of the corresponding genes. These differences could provide a valuable resource for identifying the involvement of these modulators in tumour escape mechanisms and the response to therapy in GBM [9]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have