Abstract
In this study, the applicability and performance of an integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) plant with and without carbon capture and sequestration (CCS) in a load-following power production scenario is investigated. Ten different process configurations are simulated using a combination of Aspen Plus 2006.5 and MATLAB tools. It was found that the addition of CAES to an SOFC plant provided significant load-following capabilities with relatively small penalties to efficiencies (1.1%HHV) and levelized costs of electricity (LCOE) (0.08–0.3 ¢ kW−1 h−1). The load-following capabilities of the CAES-enabled plants, as measured by proposed squared-error based metrics, were excellent and were not impacted by the addition of CCS. CCS-enabled configurations using SOFCs with and without CAES are able to reduce direct CO2 emissions to essentially zero. The introduction of a seasonal, partial power train shutdown schedule, while useful for maintenance and cleaning purposes, also reduces fuel consumption by 9.5% with very small penalties to the overall load-following performance of the SOFC/CAES plant. Although SOFCs are perhaps decades away from being implemented on the scale discussed in this study, the forward-looking energy conversion strategy proposed in this work shows promise for providing future carbon-free peaking power.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have