Abstract
This systematic review explores machine learning (ML) applications in surgical motion analysis using non-optical motion tracking systems (NOMTS), alone or with optical methods. It investigates objectives, experimental designs, model effectiveness, and future research directions. From 3632 records, 84 studies were included, with Artificial Neural Networks (38%) and Support Vector Machines (11%) being the most common ML models. Skill assessment was the primary objective (38%). NOMTS used included internal device kinematics (56%), electromagnetic (17%), inertial (15%), mechanical (11%), and electromyography (1%) sensors. Surgical settings were robotic (60%), laparoscopic (18%), open (16%), and others (6%). Procedures focused on bench-top tasks (67%), clinical models (17%), clinical simulations (9%), and non-clinical simulations (7%). Over 90% accuracy was achieved in 36% of studies. Literature shows NOMTS and ML can enhance surgical precision, assessment, and training. Future research should advance ML in surgical environments, ensure model interpretability and reproducibility, and use larger datasets for accurate evaluation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have