Abstract

Modern 3-D multiprocessor systems-on-chip (MP-SoC) incorporate processing elements (PEs) and memories within die-stacks interconnected using through-silicon vias (TSVs). The resulting power density of these systems necessitates the inclusion of thermal effects in the architecture space exploration stage of the design process. The number and placement of TSVs influences the thermal conductivity in the vertical direction in die-stacks, and consequently these must be considered during thermal analysis. However, the special requirement of keep out zones (KOZs) for TSVs due to mechanical stress considerations complicates the design of the vertical interconnect, potentially impacting its electrical performance as well. This paper presents an integrated methodology that allows for TSV topology exploration to evaluate the best vertical interconnect structure while considering crosstalk, area overheads, and KOZ requirements using an initial system floorplan. After incorporating feedback from the exploration, the resulting vertical interconnect is included within a temperature-power simulation that estimates the thermal profile of the 3-D stack. Within this methodology, a novel power management scheme for 3-D MP-SoCs that considers both temperature as well as positional information and thermal relationships between PEs, while performing dynamic voltage-frequency scaling (DVFS), is introduced. The scheme effectively maintains smooth temperature profiles, decreases fluctuations in voltage-frequency levels, and increases the aggregate frequency of operation at a lower total power dissipation. Further, the scheme is applied to a stack partitioned into voltage islands, where it is shown to match the conventional per-core DVFS schemes in its performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call