Abstract

Pectin-crosslinked gum ghatti hydrogel (PGH) has been synthesized utilizing pectin and gum ghatti through an uncomplicated and inexpensive copolymerization method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM-elemental mapping), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS) characterization techniques have been employed to determine various structural, chemical and compositional characteristics of fabricated PGH. Three different weight ratios (1:1, 2:1, or 1:2 for pectin and gum ghatti, respectively) were employed to synthesize three distinct types of PGH. Swelling studies has been done to determine the best ratios for PGH fabrication. PGH has been assessed as an adsorbent for the removal of malachite green dye from aqueous solutions. The effects of PGH dosage (100–400 mg/L), dye concentration (10–160 mg/L), pH (2–9 pH), adsorption time (0–480 min), and temperature (25–55 °C) has been examined through batch solutions. According to Langmuir isotherm analysis, the maximum adsorption capacity is 658.1 mg/g. By using pseudo-second-order kinetics and the Freundlich adsorption isotherm, the adsorption process could be well explained. After five consecutive cycles, PGH had an adsorption percentage of 86.917 % for the malachite green dye. It is safe for the environment and may be used to remove malachite green (MG) dye from aqueous solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.