Abstract

Adsorption behavior of mentha (mint) plant biochar (MPB) in removal of malachite green (MG) dye from aqueous solution was analyzed as a function of different pH (4.0-10.0), initial dye concentration (20-100 mg/L), contact time (0-45 min) and dose of adsorbent (0.05-0.3 g/100 mL). The zeta potential of the MPB particles was found to be -37.9 mV, indicating a negatively charged sorption surface of MPB particles. MPB was found to be more effective in removal of MG dye at pH 6.0 due to combined action of physico-chemisorption and a reductive electron transfer reaction. Results on the Brunauer-Emmett-Teller (BET) analysis of the N2 adsorption-desorption isotherm of MPB as adsorbent showed sigmoidal shape similar to the type IV isotherm and mesoporous nature. The cyclic voltammetric analysis of MG dye showed a reversible, coupled redox reaction at the interface of dye molecules and MPB particles. The maximum monolayer adsorption capacity (qmax) of MPB was found to be 322.58 mg g-1. The separation factor (RL) value was between 0 and 1, indicating a favourable adsorption of MG dye onto MPB. The results fitted well to a pseudo-second-order kinetic model. Further results from desorption experiments showed recovery of MG dye by about 50% in the presence of 1 N HCl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call