Abstract

This article reports the synthesized fabrication process design and module development that enabled the monolithic integration of deep submicrometer size, two dimensional hole-type photonic band gap crystals (PhCs) with microelectromechanical system (MEMS) actuators and optical testing structures (OTS). Techniques enabling sublithographic wavelength patterning using only conventional chrome-on-glass binary photomasks without phase shift features were achieved through the manipulation of mask bias designs and the partial coherence control of the lithographic exposure system. Together with the development of time multiplexed reactive ion etching and focus ion beam milling techniques, such design of the process allows the realization of highly dense PhC and MEMS actuators physically released from the buried oxide layer. Here, disparate pattern dimensions [with PhC critical dimensions (CDs) of only 175nm, MEMS typical dimensions of 2μm, and OTS openings more than 400μm wide], varied etch depth (3μm for the PhC and MEMS, 61μm for the OTS), and the requirement of a sufficient process latitude for exposure and etch processes are some of the key challenges that were overcome for a successful integration of air-bridge-type PhC CDs with movable MEMS actuators. Hence, the works described in this article enable MEMS tunable PhC properties with potential application in next generation dynamic optical communication networks and photonic integrated circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.