Abstract
The azine of pentafluorobenzaldehyde had been previously prepared from pentafluorobenzaldehyde and hydrazine. However, the analogous reaction of 2,3,4,5,6-pentafluoroacetophenone 1 with hydrazine did not result in the formation of azine 3 but resulted instead in the formation of 3-methyl-4,5,6,7-tetrafluoro-1H-indazole, 4, via the hydrazone 2. The resulting indazole was characterized by high resolution mass spectroscopy and 1H-, 13C-, and 19F-NMR spectroscopy. The geometry and electrostatic properties of the parent indazole and its derivative, 4, were studied with ab initio quantum theory and density functional methods. Our optimized structure of the parent indazole computed at the MP2(fc)/6-311G** level is presumably more accurate than the structure derived from microwave measurements. The preferred conformer of 4 was determined from RHF/6-31G* energies and full normal mode analyses were used to characterize both conformers. The minimum structure of 4 was refined at the MP2(fc)/6-311G** level of theory and compared to the unsubstituted structure. The electrostatic properties of the parent indazole and 4 are discussed and compared to those of benzene and hexafluorobenzene calculated at the same level. Natural bond order (NBO) calculations were performed to rationalize the difference in direction of the dipole moments of the parent indazole and 4. The gauge-invariant atomic orbital (GIAO) method was employed to calculate atomic shielding tensors of the indazoles using density functional theory at the B3LYP/6-311+G(2d,p) level. The calculated chemical shifts were used to aid in assigning peaks in the NMR spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Chemical Society, Perkin Transactions 2
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.