Abstract

This work describes the synthesis and full characterization of a series of GaCl3 and B(C6 F5 )3 adducts of diazenes R(1) NNR(2) (R(1) =R(2) =Me3 Si, Ph; R(1) =Me3 Si, R(2) =Ph). Trans-PhNNPh forms a stable adduct with GaCl3 , whereas no adduct, but instead a frustrated Lewis acid-base pair is formed with B(C6 F5 )3 . The cis-PhNNPh⋅B(C6 F5 )3 adduct could only be isolated when UV light was used, which triggers the isomerization from trans- to cis-PhNNPh, which provides more space for the bulky borane. Treatment of trans-PhNNSiMe3 with GaCl3 led to the expected trans-PhNNSiMe3 ⋅GaCl3 adduct but the reaction with B(C6 F5 )3 triggered a 1,2-Me3 Si shift, which resulted in the formation of a highly labile iso-diazene, Me3 Si(Ph)NN; stabilized as a B(C6 F5 )3 adduct. Trans-Me3 SiNNSiMe3 forms a labile cis-Me3 SiNNSiMe3 ⋅B(C6 F5 )3 adduct, which isomerizes to give the transient iso-diazene species (Me3 Si)2 NN⋅B(C6 F5 )3 upon heating. Both iso-diazene species insert easily into one BC bond of B(C6 F5 )3 to afford hydrazinoboranes. All new compounds were fully characterized by means of X-ray crystallography, vibrational spectroscopy, CHN analysis, and NMR spectroscopy. All compounds were further investigated by DFT and the bonding situation was assessed by natural bond orbital (NBO) analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.