Abstract

The reaction of HN3 with the strong Lewis acid B(C6 F5 )3 led to the formation of a very labile HN3 ⋅B(C6 F5 )3 adduct, which decomposed to an aminoborane, H(C6 F5 )NB(C6 F5 )2 , above -20 °C with release of molecular nitrogen and simultaneous migration of a C6 F5 group from boron to the nitrogen atom. The intermediary formation of azide-borane adducts with B(C6 F5 )3 was also demonstrated for a series of organic azides, RN3 (R=Me3 Si, Ph, 3,5-(CF3 )2 C6 H3 ), which also underwent Staudinger-like decomposition along with C6 F5 group migration. In accord with experiment, computations revealed rather small barriers towards nitrogen release for these highly labile azide adducts for all organic substituents except R=Me3 Si (m.p. 120 °C, Tdec =189 °C). Hydrolysis of the aminoboranes provided C6 F5 -substituted amines, HN(R)(C6 F5 ), in good yields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.