Abstract
A major problem in world health care is the development of antibiotic resistance in bacteria. In light of this, pure and calcium-doped zinc tin oxide (ZTO) nanoparticles, Zn2SnO4 (S1), Zn2Sn0.7Ca0.3O4 (S2), Zn2Sn0.5Ca0.5O4 (S3), and Zn2Sn0.3Ca0.7O4 (S4), were synthesized via simple and cost effective microwave assisted method. The doping effect on antibacterial activity was studied in detail. The XRD spectrum revealed that all the deposited samples exhibited a spinel cubic structure. A decrease in crystallite size, an increase in strain and dislocation density was observed with an increase in Ca concentration. FESEM images exhibited an irregular and non-homogeneous nature with crystalline morphology having a physical dimension of nm size. EDAX confirmed the purity of deposited samples. We used the agar well diffusion technique to study the antibacterial activity of Gram-positive and Gram-negative bacteria. The doping of the ZTO matrix with Ca ions increased its antibacterial performance by 99% against Klebsiella pneumoniae bacteria, and its effectiveness was enhanced with increasing Ca ion concentration inside the Zn2SnO4 nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied physics. A, Materials science & processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.