Abstract

BackgroundThe evolution of antibiotic resistance in bacteria is a topic of major medical importance. Evolution is the result of natural selection acting on variant phenotypes. Both the rigid base sequence of DNA and the more plastic expression patterns of the genes present define phenotype.ResultsWe investigated the evolution of resistant E. coli when exposed to low concentrations of antibiotic. We show that within an isogenic population there are heritable variations in gene expression patterns, providing phenotypic diversity for antibiotic selection to act on. We studied resistance to three different antibiotics, ampicillin, tetracycline and nalidixic acid, which act by inhibiting cell wall synthesis, protein synthesis and DNA synthesis, respectively. In each case survival rates were too high to be accounted for by spontaneous DNA mutation. In addition, resistance levels could be ramped higher by successive exposures to increasing antibiotic concentrations. Furthermore, reversion rates to antibiotic sensitivity were extremely high, generally over 50%, consistent with an epigenetic inheritance mode of resistance. The gene expression patterns of the antibiotic resistant E. coli were characterized with microarrays. Candidate genes, whose altered expression might confer survival, were tested by driving constitutive overexpression and determining antibiotic resistance. Three categories of resistance genes were identified. The endogenous β-lactamase gene represented a cryptic gene, normally inactive, but when by chance expressed capable of providing potent ampicillin resistance. The glutamate decarboxylase gene, in contrast, is normally expressed, but when overexpressed has the incidental capacity to give an increase in ampicillin resistance. And the DAM methylase gene is capable of regulating the expression of other genes, including multidrug efflux pumps.ConclusionIn this report we describe the evolution of antibiotic resistance in bacteria mediated by the epigenetic inheritance of variant gene expression patterns. This provides proof in principle that epigenetic inheritance, as well as DNA mutation, can drive evolution.

Highlights

  • The evolution of antibiotic resistance in bacteria is a topic of major medical importance

  • Variable Gene Expression To further investigate the basis of the antibiotic resistance we examined gene expression patterns in multiple E. coli populations surviving selection with 0, 1, 2.5, 5, 10 or 30 μg/ml amp, using a total of 35 Affymetrix E. coli version 2.0 microarrays

  • To test the possible function of DNA methylation in the observed evolution of antibiotic resistance we examined the ER2925 strain of E. coli K12, which is deficient for both deoxyadenosine methyltransferase (DAM) and DCM dependent DNA methylation

Read more

Summary

Introduction

The evolution of antibiotic resistance in bacteria is a topic of major medical importance. Evolution is the result of natural selection acting on variant phenotypes. Both the rigid base sequence of DNA and the more plastic expression patterns of the genes present define phenotype. It is interesting to note, that normally there will be a large number of cells immediately surrounding the resistant colony, and only a few of these cells form satellite colonies. What distinguishes these few cells and allows them to grow rather than die? Heritable epigenetic variation creates phenotypic diversity for natural selection to act upon

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.