Abstract

This work describes an original method to synthesize nanoparticles of starch (NPS), cellulose (NPC), and cellulose/hemicellulose (NPCH) from corn starch (S), microcrystalline cellulose (MCC) and hemp fibers (H), respectively. The synthesis is simply based on the treatment of the latter with trifluoroacetic acid. The resultant nanoparticles are easily dispersed in aqueous solutions. The size of these quasi-spherical particles, as measured by TEM and AFM, is less than 10nm. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) of NPC revealed the loss of original cellulose crystallinity and formation of cellulose II structure after dispersion in water, while the structures of NPCH and NPS were found to be amorphous. Thermogravimetric analysis (TGA) results indicated that the resultant NPC and NPS undergo a two-step pyrolysis, whereas the unprocessed MCC and S undergo one-step pyrolysis. Curcumin was chosen as a model drug. As a model drug release system, NPS were found to release curcumin in a controlled way through a pH-dependent mechanism, with release capacity of about 43% and 65% of the original loaded curcumin under pH 7.4 and 1.2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.