Abstract
Treating chronic wounds poses significant challenges in clinical medicine due to bacterial infection, reactive oxygen species (ROS) accumulation, and excessive inflammation. This study aimed to address these issues by developing a wound dressing with antibacterial, antioxidant, and anti-inflammatory properties. Chitosan was functionally modified with acrolein to covalently bind to epigallocatechin gallate (EGCG), enabling a high EGCG load. Subsequently, polyvinyl alcohol (PVA) and EGCG-modified chitosan were crosslinked to prepare a new double-network hydrogel with added cysteine (CSAEC/P50). CSAEC/P50 demonstrated optimal mechanical properties (low swelling rate, high water retention, and optimal flexibility), low hemolysis, high coagulation properties, and antibacterial and antioxidant activities. Cell scratch tests indicated that CSAEC/P50 can promote NIH3T3 cell migration. Immunofluorescence results showed that CSAEC/P50 promoted the transformation of proinflammatory M1 macrophages to anti-inflammatory M2 macrophages. These findings suggest that CSAEC/P50 has significant potential for use in wound dressing applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.