Abstract
Bone morphogenetic protein-7 (BMP-7) affects the presence of macrophage subtypes in vitro and in vivo at an early stage of atherosclerosis (ATH); however, it remains unknown whether BMP-7 treatment affects the development and progression of ATH at a mid-stage of the disease. We therefore performed a Day 28 (D28) study to examine BMP-7's potential to affect monocyte differentiation. Atherosclerosis was developed in ApoE KO mice, and these animals were treated with intravenous injections of BMP-7 and/or liposomal clodronate (LC). BMP-7 significantly (P < 0.05) lowers plaque formation following induction of atherosclerosis. However, upon macrophage depletion, BMP-7 fails to significantly alter plaque progression suggesting a direct role of BMP-7 on macrophages. Immunohistochemical staining of carotid arteries was performed to determine BMP-7's effect on pro-inflammatory M1 inducible nitric oxide synthase and anti-inflammatory M2 (cluster of differentiation [CD]206, Arginase-1) macrophages, and monocytes ( CD14). BMP-7 significantly reduced pro-inflammatory M1 macrophages and increased anti-inflammatory M2 macrophages at D28, while BMP-7 showed no effect on M2 macrophage differentiation in animals treated with LC. Enzyme-linked immunosorbent assay data showed significant reduction in proinflammatory cytokines (Interleukin-6 [IL-6]), monocyte chemoattractant protein-1, and tumor necrosis factor-α) and a significant increase in anti-inflammatory cytokine (IL-10) in BMP-7 treated mice (P < 0.05).Western blot analysis of arterial tissue confirms a significant increase in pro-survival kinases extracellular-signal regulated kinase and SMAD and a reduction in pro-inflammatory kinases p38 and c-Jun N-terminal kinase in BMP-7 treated mice (P < 0.05). Overall, this study suggests that clodronate treatment inhibits BMP-7 induced differentiation of monocytes into M2 macrophages and improved systolic blood velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.