Abstract

Cryogels are suitable candidates to be used as drug release systems due to their interconnected pore structures, high surface areas, high liquid absorption capacities, and elasticity. With this purpose, we aimed to produce a cryogel structure to be used in drug release applications with the approach of tissue engineering. As biodegradable and biocompatible polymers chitosan and gelation were selected. The cryogels were fabricated using the combination of these polymers in the presence of glutaraldehyde under cryogenic conditions. The produced optimum gel scaffold was first characterized using FTIR, SEM, porosity, swelling ability, and degradation analyses. Successfully crosslinked gels exhibited an interconnected pore structure with an average pore diameter of 52.95 µm. As a result of the examination of the time-dependent weight change, it was also revealed that the cryogels have a liquid absorption capacity of about 500 times their dry weight and are biodegradable. The mainly characterized cryogel sample was evaluated for potential drug loading and release applications using methyl orange (MO) as a model drug. Gels, which swell in a short time, absorb the dye quickly and the cumulative release of the dye indicates that the gels are suitable for extended-release systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.