Abstract

V-doped semi-insulating (VDSI) SiC crystal is a promising substrate for high-frequency electronic devices achieved using GaN epitaxial films. However, V doping in a SiC crystal is difficult to control owing to the different sublimation temperatures of VC and SiC. The amount of V changes depending on the growth sequence, which has been a significant concern in VDSI SiC substrates in terms of wafer reliability.In this study, therefore, we aimed to synthesize a single source by vaporizing Si, C, and V under the same conditions to improve the doping issue in VDSI SiC. We synthesized V-doped SiC powder as the starting material for VDSI SiC substrate based on thermodynamic modeling, and the synthesized powder was used to grow a VDSI SiC crystal via physical vapor transport.Finally, considering the homogeneous V concentration in the grown crystal, the synthesized V-doped SiC was observed to be effective to grow VDSI SiC independent of the growth sequence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call