Abstract

SiC semiconductor is the focus of recent international research. It is also an important raw material for China to achieve carbon emission peak and carbon neutrality. After nearly 20 years of research and development, we focus on the three types SiC crystals, n-type, p-type and semi-insulating, indicating the development of Shandong University for crystal growth. And defects control, electrical property, atomic polishing, and corresponding device authentication all obtain great progress. Total dislocation density of 6-inch n-type substrates decreases to 2307 cm−2, where BPD (Basal Plane Dislocation) lowers to 333 cm−2 and TSD (Threading Screw Dislocation) 19 cm−2. The full width at half maximum (FWHM) (0004) rocking curves is only 14.4 arcsec. The resistivity reaches more than 1E + 12 Ω·cm for semi-insulating SiC and lower than 20 mΩ·cm for n-type SiC. The impurity concentrations in 6-inch high-purity semi-insulating (HPSI) SiC crystals reach extreme low levels. The devices made of various substrate materials have good performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.