Abstract
Despite having exceptional optical and photoelectric properties, the application of organometal halide perovskites (OHP) is restricted due to the limited penetration depth of the UV excitation light and poor stability. Attempts have been made to make composite materials by mixing other materials such as upconversion nanoparticles (UCNP) with OHP. In contrast to linear absorption and emission of OHP, the nonlinear upconversion of UCNP offers numerous advantages such as deep penetration depth of the near-infrared (NIR) excitation light, minimal photodamage to biological tissues, and negligible background interference, which offer great potential in various applications such as multiplexed optical encoding, three-dimensional displays, super-resolution bioimaging, and effective solar spectrum conversion. However, it is challenging to synthesize hybrid OHP-UCNP nanocrystals due to the inherent difference in crystal structures of hexagonal phase UCNP and cubic phase OHP. In this work, we report OHP-UCNP heterostructured nanocrystals synthesized via growing cubic phase NaGdF4 UCNP over cubic phase CsPbBr3 OHP in a seed-mediated process based on a very small lattice mismatch and then converting cubic phase UCNP to hexagonal phase through heating. The juxtaposition of UCNP over OHP in a single nanocrystal facilitates efficient energy transfer from UCNP to OHP under NIR excitation and acts as a protective layer improving the stability. The stability is further enhanced by coating an inert UCNP shell on the OHP-UCNP nano-heterostructures with the same UCNP material earlier used in the heterostructures. The coating demonstrated greater stability under continuous UV exposure and in harsh environments such as high temperatures and polar solvents. These NIR excitable perovskite-UCNP nano-heterostructures with improved stability have great potential for use in new optoelectronic and biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.