Abstract

Long-term noninvasive in vivo tracking of the distribution and degradation of biodegradable hydrogels using fluorescent probes is important in tissue regeneration and drug delivery. Unlike the widely used fluorescent dyes and quantum dots (QDs) that suffer from photobleaching and undesired toxicity, upconversion nanoparticles (UCNPs) with high stability, deep tissue penetration as tracking probes are promising in deciphering the fate of hydrogels after transplantation. Herein, we reported a noninvasive in vivo hydrogel tracking method using UCNPs and found that the fluorescence intensity change from the UCNPs was well consistent with the weight change of the hydrogels, suggesting the accuracy of UCNPs in tracking hydrogel degradation. This study provides inspirations on developing advanced NIR light regulated probes with great clinical translation potentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call