Abstract

A green process has been performed for the synthesis of the emollient ester cetyl ricinoleate with a new immobilized derivative of Candida antarctica lipase B, which has been prepared by physical adsorption of Lipozyme® CalB L on a macroporous anionic exchange resin (Lewatit® MonoPlus MP 64). An immobilized CalB lipase with protein content over 30mg/g has been obtained and it has been successfully used as biocatalyst to produce cetyl ricinoleate from esterification of ricinoleic acid with cetyl alcohol. Influence of amount of biocatalyst and temperature was studied in the open-air reactor, and optimal values could be fixed in 2mg and 70°C, respectively. Biocatalyst storage stability study was developed in this reactor and it was showed the high storage stability of the immobilized derivative, because it keeps 100% of its enzymatic activity after eight months. Studies of recovery and reuse of the immobilized derivative were performed in the vacuum reactor, and it was proved the possibility of using the same biocatalyst in three consecutive reaction cycles without apparent loss of activity. Finally, the characterization of the cetyl ricinoleate obtained in the vacuum reactor demonstrated that the product obtained after only 3 or 4h of reaction meets manufacturers’ specifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.